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Abstract

The immersed boundary method is both a mathematical formulation and a numerical scheme for problems involving

the interaction of a viscous incompressible fluid and a (visco-)elastic structure. In [M.-C. Lai, Simulations of the flow

past an array of circular cylinders as a test of the immersed boundary method, Ph.D. thesis, Courant Institute of Math-

ematical Sciences, New York University, 1998; M.-C. Lai, C.S. Peskin, An immersed boundary method with formal

second-order accuracy and reduced numerical viscosity, J. Comput. Phys. 160 (2000) 705–719], Lai and Peskin intro-

duced a formally second order accurate immersed boundary method, but the convergence properties of their algorithm

have only been examined computationally for problems with nonsmooth solutions. Consequently, in practice only first

order convergence rates have been observed. In the present work, we describe a new formally second order accurate

immersed boundary method and demonstrate its performance for a prototypical fluid–structure interaction problem,

involving an immersed viscoelastic shell of finite thickness, studied over a broad range of Reynolds numbers. We con-

sider two sets of material properties for the viscoelastic structure, including a case where the material properties of the

coupled system are discontinuous at the fluid–structure interface. For both sets of material properties, the true solutions

appear to possess sufficient smoothness for the method to converge at a second order rate for fully resolved

computations.
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1. Introduction

Many problems of interest in biofluid mechanics involve the dynamic interaction of a viscous incom-

pressible fluid and an elastic or viscoelastic structure. One approach to modeling and simulating such inter-

actions is provided by the immersed boundary method [3–9]. In the immersed boundary formulation of
such problems, the configuration of the elastic structure is described by Lagrangian variables (i.e., variables

indexed by a coordinate system attached to the elastic structure), whereas the momentum, velocity, and

incompressibility of the coupled fluid–structure system are described by Eulerian variables (i.e., in reference

to fixed physical coordinates). In the continuous equations of motion, these two descriptions are connected

by making use of the Dirac delta function, whereas a smoothed approximation to the delta function is used

to link the Lagrangian and Eulerian descriptions when the continuous equations are discretely approxi-

mated for computer simulation.

A formally second order accurate version of the immersed boundary method was introduced in the
Ph.D. thesis of Lai [1,2] – prior to this work, computations performed with the immersed boundary method

typically employed a variety of genuinely first order accurate schemes. The second order accuracy of the

method of Lai and Peskin is formal in the sense that second order convergence rates are expected only

for problems where the true solution is sufficiently smooth. However, the rate of convergence of the im-

mersed boundary method has almost always been assessed in situations where the true solutions do not pos-

sess enough regularity for the formal convergence rate to be attained.

In the present work, we introduce a new formally second order accurate version of the immersed bound-

ary method and demonstrate actual second order numerical convergence rates for a prototypical fluid–
structure interaction problem. In our computational convergence study, we consider the interaction

between a viscous incompressible fluid and a viscoelastic shell (i.e., a body which, although thin, is not infi-

nitely thin). The numerical performance of the method is examined over a broad range of Reynolds num-

bers for shells with two sets of elastic properties. For the first set of elastic properties, the stiffness of the

shell tapers to zero at its edges, so that there is a continuous transition in material properties between

the fluid and the structure. We also consider the case where the stiffness of the shell is constant, so that there

is a sharp discontinuity in the material properties of the coupled system at the fluid–structure interface. At

least at low and moderate Reynolds numbers, in each situation the true solution appears to be sufficiently
regular for the numerical method to converge at its formal order of accuracy as the computational grids are

refined.

To our knowledge this is the first time that convergence rates in excess of first order have been docu-

mented using the immersed boundary method, although higher order convergence rates have been observed

for related methods [10–13]. Unlike the problem considered in the present work, previous convergence stud-

ies for the immersed boundary method have typically considered the case of an infinitely thin elastic mem-

brane (i.e., an elastic boundary or interface). The analytic solutions to such interface problems possess

discontinuities in the pressure and in derivatives of the velocity, and the immersed boundary method does
not accurately capture these discontinuities. By considering the interaction between a viscoelastic shell and

a viscous incompressible fluid, we avoid these difficulties and are able to obtain second order convergence

rates.

The numerical scheme we present is essentially a refinement of the formally second order method of Lai

and Peskin [2]. Several modifications are made to the method detailed in [2] in an attempt to reduce the

occurrence of nonphysical oscillations in the computed dynamics. The simplest of these modifications is

our use of a strong stability-preserving Runge–Kutta method [14] for the time integration of the Lagrang-

ian equations of motion (i.e., the equations that specify the evolution of the configuration of the elastic
structure).

We more drastically depart from [2] in our treatment of the Eulerian equations of motion, namely the

incompressible Navier–Stokes equations. In the present work, the solution of these equations is by a
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projection method that makes use of an implicit L-stable discretization of the viscous terms [15,16] and a

second order Godunov method for the explicit treatment of the nonlinear advection terms [17–19]. Gener-

ally speaking, projection methods [20–22] are a class of fractional step algorithms for incompressible flow

problems that update the velocity by first solving the momentum equation over a time interval without

imposing the constraint of incompressibility. Doing so yields an ‘‘intermediate’’ velocity field that is gener-
ally not divergence free. The ‘‘true’’ updated velocity is then obtained by solving a Poisson problem to en-

force the incompressibility constraint. Mathematically speaking, this process projects the intermediate

velocity onto the space of divergence free vector fields.

When an ‘‘exact’’ projection method is used, the discrete divergence of the updated velocity is identically

zero (to within roundoff error). In the present work, we employ a projection method that is not exact but

rather is ‘‘approximate’’ in the sense that the discrete divergence of the velocity only converges to zero at a

second order rate as the computational grid is refined. When such methods are used with the immersed

boundary method, we have found that it is beneficial to determine the updated velocity and pressure in
terms of the solutions to two different approximate projection equations at each timestep. This so-called

hybrid approach was originally proposed by Almgren et al. for inviscid flow [23], and our approach is

essentially an extension of their algorithm (‘‘version 5’’) to the viscous case. A more traditional projection

method would employ only a single projection at each timestep. Consequently, when compared to more

traditional projection algorithms, hybrid methods require the solution of additional systems of linear equa-

tions at each timestep, although this additional expense can be made modest. In the present context, we

have found that the use of a more traditional projection method can result in spurious oscillations in

the computed pressure. These oscillations, sometimes considered to be characteristic of the immersed
boundary method [13], can be dramatically reduced by making use of the hybrid approach we present.

Notably, this is an improvement that holds for thick structures (such as shells) as well as the more challeng-

ing thin interface case.

The remainder of the paper begins with a presentation of the immersed boundary formulation of the

continuous fluid–structure interaction equations in Section 2. Formally second order accurate spatial

and temporal discretizations of the continuous equations are then described in Section 3, although some

important numerical details regarding our treatment of the nonlinear advective terms are postponed to

an appendix. In Section 4, we verify that the scheme attains second order rates for a prototypical fluid–
structure interaction problem, using two different sets of elastic material properties and several smoothed

delta functions, and in Section 5, we demonstrate in the context of a thin interface problem that the hybrid

projection method we employ reduces the magnitude of nonphysical pressure oscillations when compared

to a more standard projection method. Conclusions and directions for future work are discussed in

Section 6.
2. The continuous equations of motion

Consider a system comprised of a viscoelastic structure immersed in a viscous incompressible fluid. We

assume that the fluid has uniform density, q, and uniform dynamic viscosity, l. The structure is taken to be

incompressible and neutrally buoyant, and the viscous properties of the structure are assumed to be iden-

tical to those of the fluid in which it is immersed. Consequently, the momentum, velocity, and incompress-

ibility of the coupled system can be described via the incompressible Navier–Stokes equations, augmented

by an appropriately defined body force. (Even in the more complicated case in which the mass density of

the structure differs from that of the fluid, the momentum, velocity, and incompressibility of the coupled
system can still be described by the incompressible Navier–Stokes equations; see [9]. The case in which

the viscosity of the structure differs from that of the fluid can also presumably be done by a generalization

of the methods proposed here, but this has not yet been attempted.)
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The immersed boundary formulation of this problem employs an Eulerian description of the velocity

and incompressibility of the fluid–structure system and a Lagrangian description of the configuration of

the immersed elastic structure. In particular, the velocity of the entire coupled system is described in terms

of an Eulerian velocity field, u(x, t), where x = (x, y) are fixed physical (Cartesian) coordinates (i.e., u(x, t)

refers to the velocity of whichever material is physically located at position x at time t), whereas the con-
figuration of the immersed elastic structure is described in terms of a curvilinear coordinate system. Let

(r, s) be material curvilinear coordinates attached to the elastic structure so that fixed values of (r, s) label

a material point for all time t, with X(r, s, t) referring to the Cartesian position of such a material point at

time t. The physical domain consists of a region U � R2. For simplicity, we take U to be the unit square and

impose periodic boundary conditions. The curvilinear coordinates are restricted to some region of (r, s)-

space, here denoted X � R2. The configuration of the elastic structure at time t is denoted by X(Æ, Æ, t),
and the curvilinear force density (i.e., the density with respect to (r, s)) generated by the elasticity of the

structure is taken to be a known functional of this configuration.
The equations of motion for the system can be written in the following form:
q
ou

ot
þ ðu � rÞu

� �
þrp ¼ lr2uþ f; ð1Þ

r � u ¼ 0; ð2Þ

fðx; tÞ ¼
Z
X
Fðr; s; tÞdðx� Xðr; s; tÞÞdrds; ð3Þ

oX

ot
ðr; s; tÞ ¼ uðXðr; s; tÞ; tÞ ¼

Z
U
uðx; tÞdðx� Xðr; s; tÞÞdx; ð4Þ

Fð�; �; tÞ ¼F½Xð�; �; tÞ�: ð5Þ

Eqs. (1) and (2) are the incompressible Navier–Stokes equations written in Eulerian form, where p(x, t)
is the pressure and f(x, t) is the (Cartesian) elastic force density. Eq. (5) formalizes the assumption

that the curvilinear elastic force density, F(Æ, Æ, t), is a given functional of the structure configuration,

X(Æ, Æ, t). A generalization that we do not consider here would be to allow F to be a time-dependent

functional.

Eqs. (3) and (4) describe the interaction between the Lagrangian and Eulerian variables. The two-

dimensional Dirac delta function, d(x) = d(x)d(y), appears in both of these equations. In each case, it

acts as a kernel of an integral transform that facilitates conversions between Eulerian and Lagrangian

quantities. Eq. (3) converts the curvilinear force density into the Cartesian force density. Note that their
numerical values are generally not equal at corresponding points. Nevertheless, the Cartesian and curvilin-

ear elastic force densities are equivalent as densities. Recalling the defining property of the Dirac delta

function,
Z
V
dðx� XÞdx ¼

1 if X 2 V ;

0 otherwise;

�

where V � U is an arbitrary region of physical space, we see that the densities are indeed equivalent via
Z
V
fðx; tÞdx ¼

Z
V

Z
X
Fðr; s; tÞdðx� Xðr; s; tÞÞdrdsdx ¼

Z
X
Fðr; s; tÞ

Z
V
dðx� Xðr; s; tÞÞdx

� �
drds

¼
Z
X�1ðV ;tÞ

Fðr; s; tÞdrds;
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where
X�1ðV ; tÞ ¼ fðr; sÞ jXðr; s; tÞ 2 V g:

The second of the interaction equations, Eq. (4), relates the material velocity of the elastic structure to the

Eulerian velocity field for the coupled system. Since u(x, t) is the velocity of whichever material is physically

located at position x at time t, for any (r, s) 2 X,
oX

ot
ðr; s; tÞ ¼ uðXðr; s; tÞ; tÞ:
We may evaluate the velocity at X(r, s, t) by making use of the delta function,
uðXðr; s; tÞ; tÞ ¼
Z
U
uðx; tÞdðx� Xðr; s; tÞÞdx;
so long as u is continuous. For the coupled system, continuity of the velocity follows from the presence of

viscosity in both the fluid and the structure.

Before concluding this section, we mention the particular elastic force density functional that will be used

in this work. Suppose that the immersed elastic structure consists of a collection of elastic fibers, where the

material coordinates (r, s) have been chosen so that a fixed value of r labels a particular fiber for all time.

Let s denote the unit tangent vector in the fiber direction,
s ¼ oX=os
oX=osj j : ð6Þ
Since the fibers are elastic, the fiber tension, T, is related to the fiber strain, which is determined by joX/osj.
The fiber tension can be expressed by a generalized Hooke�s law of the form
T ¼ r oX=osj j; r; sð Þ: ð7Þ

One can show [5,9] that the corresponding curvilinear elastic force density functional can be put in the

form
F½Xð�; �; tÞ� ¼ o

os
T sð Þ: ð8Þ
Since T and s are both defined in terms of oX/os, F is a functional that maps the structure configuration to

the curvilinear force density, F(Æ, Æ, t).
3. The discrete equations of motion

3.1. Lagrangian and Eulerian discretizations

In the immersed boundary approach to fluid–structure interaction problems, the solution to the contin-

uous equations of motion, (1)–(5), is approximated by discretizing the Eulerian equations on a Cartesian

grid and by discretizing the Lagrangian equations on a discrete lattice in the curvilinear coordinate space.

In most work using the immersed boundary method, these discretizations are fixed throughout the compu-

tation [5,24–26]. However, there has been work on utilizing structured adaptive mesh refinement in the

solution of the Eulerian equations [27].
In the present work, the physical domain is taken to be the periodic unit square. It is described using a

fixed Cartesian grid with uniform meshwidths h = Dx = Dy. The centers of the Cartesian grid cells are the

points xi;j ¼ ðiþ 1
2
Þh; ðjþ 1

2
Þh

� �
, where i, j 2 {0, 1, . . . , N � 1} and h = 1/N.
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For a quantity w(x, t) defined on the Cartesian grid, we employ the notation wn
i;j � wðxi;j; tnÞ, where tn is

the time of the nth timestep. The timestep size is implicitly defined by Dtn = tn+1 � tn, although our conver-

gence studies will employ a fixed uniform timestep Dt. Note that quantities are occasionally defined at

‘‘half-timesteps’’, tnþ1
2
¼ tn þ 1

2
Dtn.

The curvilinear coordinate space is discretized on a fixed lattice in (r, s)-space with uniform meshwidths
(Dr, Ds). Unless otherwise noted, from now on the curvilinear coordinate indices (r, s) will refer to the

‘‘nodes’’ of the curvilinear computational lattice, so that (r, s) = (r0, s0) + (mDr, nDs) for fixed constants

r0 and s0 and integer values of m and n.

Although the discretization of the curvilinear coordinate space is fixed, it is important to note that the

physical locations of the nodes of the curvilinear mesh, Xn(r, s) ” X(r, s, tn), are free to move throughout the

physical domain. In particular, the physical positions of the nodes of the curvilinear mesh are in no way

required to conform to the Cartesian grid.

3.2. Cartesian grid finite difference operators

We now introduce finite difference approximations to the spatial differential operators appearing in the

Eulerian equations of motion, beginning with the discretization of the divergence and gradient operators.

Both approximations employ second order accurate centered differences. The divergence of a vector field,

u = (u, v), is approximated by
D � uð Þi;j ¼
uiþ1;j � ui�1;j

2h
þ vi;jþ1 � vi;j�1

2h
; ð9Þ
and the gradient of a scalar function, w, is approximated by
ðGwÞi;j ¼
wiþ1;j � wi�1;j

2h
;
wi;jþ1 � wi;j�1

2h

� �
: ð10Þ
The Laplacian of w is approximated using standard second order accurate finite differences, denoted
by
ðLwÞi;j ¼
wiþ1;j þ wi�1;j � 2wi;j

h2
þ
wi;jþ1 þ wi;j�1 � 2wi;j

h2
: ð11Þ
Note that L does not equal D Æ G.

The discrete vector Laplacian of a vector field is (Lu)i,j = ((Lu)i,j, (Lv)i,j), where u = (u, v). It is simply the

application of the discrete scalar Laplacian to the individual components of u.

3.3. The discrete approximate projection operator

Like all projection-type methods for incompressible flow, our method for the incompressible Navier–

Stokes equations makes use of the Hodge decomposition theorem. This result says that an arbitrary smooth

vector field can be uniquely defined as the sum of a divergence free vector field and the gradient of a scalar

function. The discrete analog of this decomposition is
w ¼ vþGu; ð12Þ
where w is an arbitrary vector field on the Cartesian grid and v satisfies (D Æ v)i,j ” 0 on the grid. Eq. (12)
implicitly defines a projection operator, P, given by
v ¼ Pw ¼ ðI �GðD �GÞ�1D�Þw: ð13Þ
Since (D Æ v)i,j ” 0, for any vector field w, P2w = Pw, so P is a projection.
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In practice, the application of the operator defined by Eq. (13) requires the solution of a system of

linear equations of the form D Æ Gu = D Æ w. For a two-dimensional periodic grid with an even

number of grid cells in each direction, D Æ G has a nontrivial four-dimensional nullspace. This complicates

the solution process when iterative methods (such as multigrid) are employed to solve for u. Moreover,

when P is used in the solution of the incompressible Navier–Stokes equations, this nontrivial nullspace
results in the decoupling of pressure field on four sub-grids, leading to a so-called ‘‘checkerboard’’

instability.

To avoid these difficulties, it was originally proposed in [28] that the foregoing exact projection be re-

placed by a carefully chosen ‘‘approximate’’ projection operator. In the present work, we use a cell centered

approximate projection operator of a type first introduced by Lai [29] (see also [30]). This approximate pro-

jection operator, ~P , is defined by
~Pw ¼ ðI �GðLÞ�1D�Þw: ð14Þ

It is important to note that this operator is not a projection, since L 6¼ D Æ G. However, L and D Æ G agree to

second order in h so that for smooth w, D � ~Pw ¼ Oðh2Þ. Moreover, kPw� ~Pwk ! 0 as h! 0. On a uniform

grid with periodic boundary conditions, it can be demonstrated that k~Pwk 6 kwk, so the cell centered

approximate projection operator is stable [29]. Another important issue with regards to the stability of
the overall method is the question of which quantity is to be (approximately) projected [23]; we address this

issue below in Section 3.6.

3.4. A discrete curvilinear force density

The continuous version of the elastic force density functional that we employ in the present work is

given by Eqs. (6)–(8). To approximate this functional on the curvilinear computational lattice, we

introduce a finite difference approximation to differentiation in the s curvilinear coordinate direction,
defined by
ðDsWÞðr; sÞ ¼
W r; sþ 1

2
Ds

� �
�W r; s� 1

2
Ds

� �
Ds

; ð15Þ
where W(r, s) is a function defined on the curvilinear computational lattice.

Given a structure configuration, X, the unit tangent vector, (6), is approximated at ‘‘half-integer’’
multiples of Ds by
s r; sþ 1

2
Ds

� �
¼
ðDsXÞðr; sþ 1

2
DsÞ

ðDsXÞðr; sþ 1
2
DsÞ

�� �� : ð16Þ
Similarly, the fiber tension, (7), is approximated by
T r; sþ 1

2
Ds

� �
¼ r ðDsXÞ r; sþ 1

2
Ds

� �����
����; r; sþ 1

2
Ds

� �
: ð17Þ
Finally, Eqs. (16) and (17) may be used to approximate the curvilinear elastic force density, (8), at integer

multiples of Ds by
Fðr; sÞ ¼ Ds T sð Þð Þðr; sÞ: ð18Þ
Note that the half-integer multiples of Ds that appear in the foregoing are only intermediate values. In the

end, the evaluation of (18) at the nodes of the curvilinear computational lattice requires only the values of

X(r, s) at the nodes of the curvilinear computational lattice, i.e., for (r, s) = (r0, s0) + (mDr, nDs) for fixed
constants r0 and s0 and for integer values of m and n.
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3.5. Smoothed versions of the Dirac delta function

In its treatment of the interaction equations that connect the Lagrangian and Eulerian frames, the im-

mersed boundary method makes use of a smoothed approximation to the Dirac delta function. In the com-

putational results below, we will employ several such functions, though our choices are by no means
exhaustive. In each case, the smoothed delta function, denoted dh(x), is of the form
Fig. 1.

These
dhðxÞ ¼
1

h2
/

x
h

� �
/

y
h

� �
; ð19Þ
recalling that x = (x, y) and that h = Dx = Dy. Our particular choices for /(r) are displayed in Fig. 1 and are

defined presently.

In [9], a collection of axioms (including moment conditions and a quadratic condition) are described that

lead to the unique definition of a particular smoothed delta function with finite support. A family of such

functions may be generated by imposing additional moment conditions and correspondingly broadening

the support. The first member of this family, the so-called four-point delta function, dIB4hðxÞ, satisfies two
discrete moment conditions with a support of four meshwidths in each spatial dimension (i.e., a support

of a total of 16 grid cells in two dimensions). It is defined in terms of the function /IB
4 ðrÞ, where
/IB
4 ðrÞ ¼

1
8
ð3� 2jrj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj � 4r2

p
Þ; 0 6 jrj < 1;

1
8

5� 2jrj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jrj � 4r2

p� �
; 1 6 jrj < 2;

0; 2 6 jrj:

8>><
>>: ð20Þ
By requiring the smoothed delta function to satisfy two additional discrete moment conditions, a six-point

delta function is obtained. This delta function, first employed by Stockie [31], is denoted dIB6hðxÞ and is de-

fined in terms of
/IB
6 ðrÞ ¼

61
112
� 11

42
jrj � 11

56
jrj2 þ 1

12
jrj3 þ

ffiffi
3
p

336
ð243þ 1584 rj j � 748jrj2

�1560 rj j3 þ 500jrj4 þ 336 rj j5 � 112jrj6Þ
1
2; 0 6 jrj < 1;

21
16
þ 7

12
jrj � 7

8
jrj2 þ 1

6
jrj3 � 3

2
/IB

6 ðjrj � 1Þ; 1 6 jrj < 2;

9
8
� 23

12
jrj þ 3

4
jrj2 � 1

12
jrj3 þ 1

2
/IB

6 ðjrj � 2Þ; 2 6 jrj < 3;

0; 3 6 jrj:

8>>>>>>><
>>>>>>>:

ð21Þ
Three choices among many for /(r) when constructing a smoothed approximation to the Dirac delta function using Eq. (19).

functions are defined by Eqs. (20)–(22), respectively.
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In [32], Tornberg and Engquist examine the use of smoothed delta functions in the regularization of singu-

lar source terms in a variety of settings. One smoothed delta function that provides them with particularly

good results is a piecewise cubic function, dC4hðxÞ, defined in terms of
/C
4 ðrÞ ¼

1� 1
2
jrj � jrj2 þ 1

2
jrj3; 0 6 jrj < 1;

1� 11
6
jrj þ jrj2 � 1

6
jrj3; 1 6 jrj < 2;

0; 2 6 jrj:

8><
>: ð22Þ
This smoothed delta function has a support of four meshwidths in each spatial dimension and satisfies four

moment conditions, but it does not satisfy all of the axioms prescribed in [9]. In practice, it is also less costly

to compute than the other delta functions considered as it does not require the evaluation of any square

roots.

3.6. Timestepping

At the beginning of timestep n, we possess approximations to the values of the state variables at time tn,

namely un and Xn. The pressure (which is not a state variable) must be defined at half-timesteps to obtain a

consistent second order accurate method. Thus, at the beginning of each timestep n > 0, we also possess an

approximation to a ‘‘time-lagged’’ pressure, pn�
1
2.

To advance the solution forward in time by the increment Dt, we first compute X(n+1)(r, s), a preliminary

approximation to the locations of the nodes of the curvilinear mesh at time tn+1. To do so, Eq. (4) is approx-
imated by
Xðnþ1Þðr; sÞ ¼ Xnðr; sÞ þ Dt
X
i;j

uni;jdh xi;j � Xnðr; sÞ
� �

h2: ð23Þ
A discrete approximation to F½Xð�; �Þ� provides the curvilinear elastic force densities corresponding to

structure configurations Xn and X(n+1), respectively denoted Fn and F(n+1). The equivalent Cartesian elastic

force densities are obtained by discretizing (3) and are given by
fni;j ¼
X
r;s

Fnðr; sÞdh xi;j � Xnðr; sÞ
� �

DrDs; ð24Þ

f
ðnþ1Þ
i;j ¼

X
r;s

Fðnþ1Þðr; sÞdh xi;j � Xðnþ1Þðr; sÞ
� �

DrDs: ð25Þ
A timestep-centered approximation to the Cartesian elastic force density is defined by
fnþ
1
2 � 1

2
ðfn þ fðnþ1ÞÞ: ð26Þ
We next determine un+1 and pnþ
1
2 by integrating the incompressible Navier–Stokes equations in time via a

second order projection method similar to the method introduced by Bell, Colella, and Glaz [22], a method

that in turn is a second order accurate version of Chorin�s original projection method [20,21]. Our algo-

rithm extends to the viscous case the hybrid approximate projection method (‘‘version 5’’) introduced by

Almgren et al. for the incompressible Euler equations [23]. In particular, as in [23], we obtain the values

of un+1 and pnþ
1
2 in terms of the solutions to different projection equations, as follows.

Given un, fnþ
1
2, and pn�

1
2, we first obtain the approximation to the updated velocity, un+1. We do so by

discretizing the momentum equation (1) over the time interval Dt without imposing the constraint of incom-

pressibility on un+1. Instead, the gradient of the time-lagged pressure provides an approximation to the true
pressure gradient. The nonlinear advection term is treated explicitly, and a version of the implicit L-stable
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method of Twizell et al. [15] introduced by McCorquodale et al. [16] is used to integrate the viscous terms in

time. With m ” l/q, the discretization of (1) is
ðI � g2mLÞðI � g1mLÞu� ¼ ðI þ g3mLÞun þ DtðI þ g4mLÞ �Nnþ1
2 þ 1

q
fnþ

1
2 �Gpn�

1
2

� �� �
; ð27Þ
where Nnþ1
2 is the explicit approximation to ½ðu � rÞu�nþ

1
2 detailed in Appendix A, and
g1 ¼
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4aþ 2
p

2
Dt; g2 ¼

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4aþ 2
p

2
Dt;

g3 ¼ 1� að ÞDt; g4 ¼
1

2
� a

� �
Dt;
with a ¼ 2�
ffiffiffi
2
p
� �, where � is machine precision.

The solution to Eq. (27) yields an ‘‘intermediate’’ velocity field, traditionally denoted u*, that is generally

not discretely divergence free. In formulating a projection method, one may project either the velocity incre-

ment (i.e., un+1 � u*) or the intermediate velocity itself. Although either choice yields the same value for un+1

when exact projections are employed, this is not the case when approximate projection operators are used.

Several studies have found that a more stable algorithm is obtained by approximately projecting the inter-

mediate velocity [23,30], and we follow this approach. In particular, un+1 is obtained by making use of the

approximate projection operator, ~P , defined by Eq. (14), yielding
unþ1 ¼ ~Pu�: ð28Þ

Although it is possible to determine the value of the updated pressure in terms of the approximate pro-

jection of u*, we have found that it is beneficial to determine pnþ
1
2 by approximately projecting a second

intermediate velocity field that is given by a second treatment of the momentum equation. This alternate

treatment of (1) is identical to (27) except that it does not include any approximation to the pressure

gradient, i.e.,
ðI � g2mLÞðI � g1mLÞ~u� ¼ ðI þ g3mLÞun þ DtðI þ g4mLÞ �Nnþ1
2 þ 1

q
fnþ

1
2

� �
: ð29Þ
The solution to this equation, ~u�, is the intermediate velocity that we project to obtain pnþ
1
2. We emphasize

that ~u� is only used to compute pnþ
1
2 and is not used in determining our final approximation to the velocity at

time tn+1. The approximate projection of ~u�, however, generates an alternate approximation to the velocity

at time tn+1,
~unþ1 ¼ ~P~u� ¼ ~u� �G~u;
i.e.
~u� ¼ ~unþ1 þG~u; ð30Þ
where ~u is defined as the solution to a discrete Poisson problem,
L~u ¼ D � ~u�:
Since ~P is an approximate projection operator, in general ~unþ1 6¼ unþ1.

The pressure consistent with (29) and (30) is the scalar function pnþ
1
2 that satisfies
ðI � g2mLÞðI � g1mLÞ~unþ1 ¼ ðI þ g3mLÞun þ DtðI þ g4mLÞ �Nnþ1
2 þ 1

q
fnþ

1
2 �Gpnþ

1
2

� �� �
: ð31Þ
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Following [33], a second order accurate approximation to the updated pressure is determined by substitut-

ing (30) back into (29) and comparing the result to (31). Doing so, the discrete pressure gradient is seen to

satisfy
ðI þ g4mLÞGpnþ
1
2 ¼ q

Dt
ðI � g2mLÞðI � g1mLÞG~u:
Consequently, we obtain pnþ
1
2 via
pnþ
1
2 ¼ q

Dt
ðI þ g4mLÞ

�1ðI � g2mLÞðI � g1mLÞ~u: ð32Þ
Since g4 ¼ ð
ffiffiffi
2
p
� 3

2
þ �ÞDt < 0, pnþ

1
2 is well defined by (32). Note that ~u is proportional to a first order accu-

rate approximation to the time centered pressure. Full second order accuracy is obtained by solving a sys-

tem of linear equations in (32). Although pnþ
1
2 has no influence on the value obtained for un+1, it is used in

the next timestep, when computing un+2.

Having obtained the values un+1 and pnþ
1
2, we complete the timestep by computing Xn+1 via
Xnþ1ðr; sÞ ¼ Xnðr; sÞ þ Dt
2

X
i;j

uni;jdh xi;j � Xnðr; sÞ
� �

h2 þ
X
i;j

unþ1i;j dhðxi;j � Xðnþ1Þðr; sÞÞh2
 !

: ð33Þ
Note that the evolution of the structure configuration via (23) and (33) takes the form of a second order

accurate strong stability-preserving Runge–Kutta method [14]. Eq. (33) is an explicit formula for Xn+1,

since X(n+1) is already defined; see Eq. (23).
Finally, we must discuss the initial timestep. The initial state of the system is completely determined by

the initial values of u and X. To ensure that the initial velocity at least approximately satisfies (D Æ u0)i,j ” 0,

we first replace u0 by its approximate projection,
u0  ~Pu0: ð34Þ

Next, the pressure must be determined from the values of u0 and X0. We obtain the pressure iteratively as

follows. First, the pressure is provisionally set to be identically zero. We then perform a preliminary time-

step. The computation of this preliminary timestep yields a first approximation to the pressure at time

t ¼ 1
2
Dt0. We then iteratively re-compute the initial timestep, always using the most recent approximation

to the pressure. After a small number of iterations (we use a total of five), we obtain a sufficiently accurate

approximation to the pressure at time t ¼ 1
2
Dt0 to achieve overall second order accuracy.

3.7. Implementation issues

Before concluding this section, there are a few issues we wish to address regarding our software imple-

mentation of the foregoing algorithm. The implementation of the present version of the immersed bound-

ary method makes extensive use of the SAMRAI (Structured Adaptive Mesh Refinement Application

Infrastructure) library, a C++ framework for developing parallel scientific applications which provides sup-

port for block structured adaptive mesh refinement (AMR) [34,35]. Although our implementation allows us

to make use of the parallel and AMR capabilities provided by SAMRAI, we do not do so in the present

work since our focus is on the order of accuracy of the immersed boundary method itself and not on further
enhancements to the basic method.

In our implementation, SAMRAI provides a mechanism for organizing computations on the Cartesian

grid. To manage Lagrangian quantities defined on the curvilinear mesh (i.e., X and F), we additionally

make use of PETSc (the Portable, Extensible Toolkit for Scientific Computation) [36–38]. All numerical

quantities defined on the curvilinear mesh are stored in PETSc vectors, allowing for parallel communication

of data on the curvilinear mesh. Additionally, by making use of the linear and nonlinear solvers provided
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by PETSc, it is straightforward to solve systems of equations on the curvilinear mesh, potentially facilitat-

ing the implementation of efficient fully implicit time discretizations for the immersed boundary method.

At each timestep, it is necessary to compute the solution to several discrete Poisson and Helmholtz type

systems of linear equations. The Helmholtz problems we encounter are generally well conditioned, and it is

possible to solve them efficiently via red–black Gauss–Seidel iterations. The particular solver we use for
these problems is provided by SAMRAI. The Poisson problems are more challenging and require a more

sophisticated solution method. For these problems, we make use of the structured multigrid solvers pro-

vided by the hypre project, a library of high performance preconditioners [39,40]. (See [41] for an introduc-

tion to multigrid methods that includes a description of red–black Gauss–Seidel.)
4. Computational convergence results for smooth test problems

Typically, the convergence of the immersed boundary method has been studied computationally for

problems which do not possess a sufficient degree of smoothness for the method to attain its formal con-

vergence rate. In particular, most previous convergence studies have focused on the case of a viscous incom-

pressible fluid interacting with an infinitely thin elastic membrane (i.e., an elastic interface or boundary).

The true solutions to such problems possess discontinuities at the interface in the pressure and in the nor-

mal derivative of the velocity, and these discontinuities are not accurately captured by the immersed bound-

ary method. An alternative approach is taken by the immersed interface method [10,13], where such

discontinuities are explicitly accounted for by the method in a manner that yields higher order accuracy.
In order to assess the performance of the present scheme in a setting where we can expect convergence

rates that correspond to the formal order of accuracy of the method, we consider the interaction between a

viscous incompressible fluid and a viscoelastic shell of finite thickness. Since the shell is thin but not infi-

nitely thin, the discontinuities present in the true interface problem do not arise in this situation. The elastic

properties of the shell are described in terms of a continuum of anisotropic elastic fibers. In Section 4.1, we

specify the stiffness of the fibers so that the fiber tension smoothly tends to zero at the edges of the shell. As

long as the structure does not become too distorted, the resulting Cartesian elastic force density, f, will be a

continuous function of x. In Section 4.2, the fiber tension is taken to be a constant multiple of joX/osj. In
this case, the resulting Cartesian elastic force density is only piecewise continuous due to the sharp discon-

tinuity in material properties that occurs at the fluid–structure interface. For low and moderate Reynolds

number flows, we observe second order convergence rates in both situations. At higher Reynolds numbers,

it appears that under-resolution of the velocity prevents the method from attaining full second order con-

vergence rates, although in all cases empirical convergence rates in excess of first order are observed. Pre-

sumably, second order convergence would be observed even for the high Reynolds number cases on

sufficiently fine grids.

Before proceeding to the specification of the two sets of elastic properties in Sections 4.1 and 4.2 and the
corresponding computational results, we first describe the common aspects for both sets of computations,

including the computational meshes used to describe the Cartesian and curvilinear coordinate spaces, the

initial conditions, and the choice of timestep.

Recall that the physical domain, U, is specified to be the periodic unit square and is described using a

fixed N · N Cartesian grid with uniform meshwidths h = Dx = Dy, where h = 1/N. For this computational

study, we likewise take the curvilinear coordinate space to be X = [0, 1] · [0, 1]. We employ a fixed Nr · Ns

computational lattice in the curvilinear coordinate space, where Nr ¼ 3
8
N and Ns ¼ 75

16
N . With Dr = 1/NR

and Ds = 1/Ns, the ‘‘nodes’’ of the curvilinear mesh are the points
ðr; sÞ ¼ ðr0; s0Þ þ mDr; nDsð Þ ¼ Dr
2
;
Ds
2

� �
þ mDr; nDsð Þ;
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where m 2 {0, 1, . . . , Nr � 1} and n 2 {0, 1, . . . , Ns � 1}. Here, the shift by Dr
2
avoids having fibers at the ex-

act edges of the shell, while the shift by Ds
2
is for notational consistency only.

As discussed in Sections 2 and 3.4, the elastic force density generated by the structure configuration is

defined in terms of a continuum of elastic fibers, and the curvilinear coordinates, (r, s), are chosen so that

a fixed value of r labels a particular fiber for all time t. So that each fiber forms a closed loop, X is taken to
be periodic in the s-coordinate direction. Note that s is not equal to arc length along the fibers. For this

particular Lagrangian elastic force density functional, no boundary conditions are imposed in the r-coor-

dinate direction. The initial configuration of the viscoelastic body is given by the mapping
Xðr; s; 0Þ ¼ 1

2
;
1

2

� �
þ aþ c r � 1

2

� �� �
cosð2psÞ; bþ c r � 1

2

� �� �
sinð2psÞ

� �
; ð35Þ
with a = 0.2, b = 0.25, and c = 0.0625. This mapping defines the initial configuration of each fiber to be an

ellipse, so that the initial configuration of the entire structure is a ‘‘thick’’ elliptical shell. The value of c
determines the thickness of the shell and is chosen so that the thickness of the initial configuration is

approximately four Cartesian meshwidths on the coarsest grid considered.

In all computations, the initial velocity of the system is taken to be u(x, 0) ” 0. After being released at
t = 0, the shell undergoes damped oscillations and tends toward its resting configuration, a circular shell.

The uniform density of the fluid–structure system is taken to be q = 1.0, and the uniform viscosity, l, is
successively assigned the values 0.05, 0.005, and 0.0005. Using the fiber tensions specified in either Section

4.1 or Section 4.2, the corresponding flows have Reynolds numbers of approximately 10, 100, and 1000.

The computation is halted and convergence is assessed at t = 0.4. For each parameter regime considered,

the shell will have approximately completed its first oscillation at this point in the computation. In all cases,

we employ a uniform timestep that is chosen so that the computed velocity satisfies
Dtkuk1 < 0:1h: ð36Þ

This is a more severe restriction than our explicit treatment of the nonlinear advection term requires; how-

ever, since we are treating the elastic force density in an explicit manner, the hyperbolic stability restriction

is not the only stability constraint that the timestep must satisfy. Although (36) may not be sufficient to

ensure stability in the limit as h! 0, it appears to be adequate for the values of h considered here.

For most of the following computations, Eq. (36) is satisfied for Dt = 0.08/N, and this choice generally

appears to result in stable computations for the grid spacings and parameter ranges we consider. The sole
exception is for the computations in Section 4.2 that employ the piecewise cubic delta function for the case

l = 0.0005. We found that in under-resolved computations, the piecewise cubic delta function can introduce

strong oscillations in the computed velocity near the fluid–structure interface. In this particular case, we

found that it is sufficient to reduce the size of the timestep to Dt = 0.04/N in order to satisfy (36).

Below, we present empirical convergence rates for u, v, p, and X in appropriately defined discrete Lp

norms for p = 1, 2. The discrete Lp norm of a scalar valued function defined on the Cartesian grid, w, is
given by
kwi;jkp ¼
X
i;j

jwi;jj
ph2

 !1=p

:

For a vector valued function defined on the curvilinear mesh, W(r, s) = (W1(r, s), W2(r, s)), the discrete L
p

norm is likewise
kWi;jkp ¼
X
r;s

W 2
1ðr; sÞ þ W 2

2ðr; sÞ
�� ��p=2DrDs

 !1=p

:
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For a computed quantity, q, let ep[q; N] denote the discrete Lp norm of the difference in the approximation

to q obtained using an N · N Cartesian grid (and the corresponding curvilinear mesh and uniform timestep)

and the approximation to q obtained using a 2N · 2N Cartesian grid (and the corresponding curvilinear

mesh and uniform timestep), i.e.,
Table

Empir

dh

dIB4h

dIB6h

dC4h

In thes

contin
ep½q;N � ¼ kqN �I2N!Nq2Nkp; ð37Þ
where I2N!N denotes interpolation from finer to coarser spatial grids. An empirical estimate for the

convergence rate of q in this norm is given by
rp½q;N � ¼ log2
ep½q;N �
ep½q; 2N �

� �
: ð38Þ
4.1. Tapered elastic stiffness

In the first set of computations, we set the fiber tension, T, via
T ¼ r oX=osj j; r; sð Þ ¼ 1þ sinð2pr � p=2Þð Þ oX=osj j:

Recalling Eqs. (6)–(8), the resulting Lagrangian elastic force density is given by
F ¼ o

os
T sð Þ ¼ 1þ sinð2pr � p=2Þð Þ o

2X

os2
:

In the absence of sharp corners in the elastic fibers that comprise the shell, this Lagrangian force density

smoothly tapers to zero as r approaches 0 or 1, i.e., there is a continuous transition in material properties

at the fluid–structure interface. As long as the structure does not become too distorted, the resulting

Cartesian elastic force density, f, will remain a continuous function of x.

Table 1 summarizes the empirical convergence rates in the discrete L1 and L2 norms observed for u, v, p,

and X at time t = 0.4. These rates are obtained via (38) with N = 128. Fig. 2 includes the values of e2[q; N]
that were used to obtain these rates. The values for e1[q; N] are similar and not shown. Second order con-

vergence rates are observed for l = 0.05 and 0.005 in nearly all quantities. For l = 0.0005, somewhat less
1

ical convergence rates for u, v, p, and X in the discrete L1 and L2 norms at time t = 0.4

q l = 0.05 l = 0.005 l = 0.0005

r1[q; 128] r2[q; 128] r1[q; 128] r2[q; 128] r1[q; 128] r2[q; 128]

u 2.15 2.16 2.11 2.20 0.77 0.51

v 2.12 2.15 2.08 2.12 0.47 0.34

p 2.00 1.89 2.20 1.86 3.76 3.32

X 2.13 1.98 1.82 1.74 2.04 1.79

u 2.10 2.08 2.13 2.14 2.63 2.86

v 2.21 2.33 2.36 2.45 2.83 3.25

p 3.37 3.57 2.72 3.01 2.16 2.08

X 2.60 2.35 2.32 2.03 1.47 1.16

u 2.15 2.13 2.14 2.20 2.19 2.15

v 2.28 2.45 2.31 2.52 2.25 2.49

p 3.51 3.83 2.77 2.97 2.38 2.37

X 2.72 2.49 2.45 2.17 1.66 1.52

e computations, the stiffness of the elastic fibers comprising the shell tapers to zero at the edges of the structure, so that there is a

uous transition in material properties at the fluid–structure interface. Convergence rates are obtained via Eqs. (37) and (38).



Fig. 2. The discrete L2 norm of the difference in the values computed for an N · N Cartesian grid (with the corresponding curvilinear

mesh and uniform timestep) and for a 2N · 2N Cartesian grid is plotted at t = 0.4 for N = 64, 128, and 256, for u, v, p, and X. For these

computations, the stiffness of the elastic fibers comprising the shell tapers to zero at the edges of the structure. Second order

convergence is generally indicated except for l = 0.0005. See also Table 1.
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than second order accuracy is observed in some variables, especially for dIB4h . This is likely due to inadequate

resolution of the flow for N = 128 in the vicinity of narrow bands of high vorticity that form near the fluid–

structure interface.

As shown in Table 1, when we employ delta functions which satisfy four moment conditions (i.e., dC4h and
dIB6h) we observe convergence rates for the Eulerian quantities that are in excess of second order. In partic-
ular, third order convergence rates are observed for the pressure in several cases. One possible reason for

these high rates may be the rapid dampening of oscillations in the computed pressure as N increases. Recall

that both dC4h and dIB6h possess negative ‘‘tails’’ (see Fig. 1). For the coarser grid computations, these negative

tails appear to induce oscillations in the computed Eulerian quantities near the fluid–structure interface. As

the spatial resolution is increased, these oscillations rapidly die out, possibly resulting in somewhat inflated

convergence rates.

Representative results for this particular set of material properties are displayed in the left-hand columns

of Figs. 4, 5, and 6, corresponding to t = 0.08, 0.2, and 0.32, respectively. These computed values were ob-
tained using the six-point delta function, dIB6h , for l = 0.005 and N = 512, although similar results were ob-

tained for the other delta functions.
4.2. Constant elastic stiffness

In the second set of computations, we set the fiber tension, T, via
Table

Empir

dh

dIB4h

dIB6h

dC4h

In thes

transit
T ¼ oX=osj j;
i.e., the stiffness of the fibers does not taper to zero at the edge of the shell. Recalling Eqs. (6)–(8), the result-

ing Lagrangian elastic force density is given by
F ¼ o

os
T sð Þ ¼ o2X

os2
:

In this case, the Cartesian elastic force density is only a piecewise continuous function of x due to a sharp

transition in material properties at the fluid–structure interface.
2

ical convergence rates for u, v, p, and X in the discrete L1 and L2 norms at time t = 0.4

q l = 0.05 l = 0.005 l = 0.0005

r1[q; 128] r2[q; 128] r1[q; 128] r2[q; 128] r1[q; 128] r2[q; 128]

u 1.78 1.81 1.75 1.80 1.73 1.84

v 1.81 1.83 1.73 1.76 1.80 2.00

p 1.94 1.48 1.79 1.65 1.59 1.51

X 2.00 1.83 1.71 1.67 1.14 1.05

u 1.80 1.80 1.64 1.64 1.94 1.64

v 1.86 1.86 1.60 1.56 2.02 1.77

p 2.02 1.55 1.83 1.56 1.92 1.75

X 2.41 2.05 2.05 1.77 1.51 1.10

u 1.90 1.91 1.50 1.52 1.50 1.17

v 1.98 2.03 1.48 1.57 1.61 1.41

p 2.29 1.90 1.77 1.63 1.13 0.88

X 2.60 2.19 1.91 1.65 1.11 0.87

e computations, the stiffness of the elastic fibers comprising the shell is constant throughout the structure, so that there is a sharp

ion in material properties at the fluid–structure interface. Convergence rates are obtained via Eqs. (37) and (38).



Fig. 3. Same as Fig. 2, except for these computations, the stiffness of the elastic fibers comprising the shell is constant throughout the

structure, yielding a sharp transition in material properties at the fluid–structure interface. Second order convergence is indicated for

l = 0.05, although somewhat less than second order rates are observed in the other cases. See also Table 2.
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Fig. 4. Computed values of u, p, and f for a shell with tapered (left-hand column) and constant (right-hand column) elastic stiffnesses,

displayed at t = 0.08. The velocity and pressure are displayed in the top row, whereas the x- and y-components of f are displayed in the

middle and bottom row, respectively. For these computations, we use dIB6h with q = 1.0, l = 0.005, and N = 512.
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Fig. 5. Data as in Fig. 4, except here displayed at t = 0.2.
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Fig. 6. Data as in Fig. 4, except here displayed at t = 0.32.
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Note that when the piecewise cubic delta function, dC4h, is used with l = 0.0005, we set Dt = 0.04/N in

order to satisfy the constraint (36). In all other cases, Dt = 0.08/N.

For this particular choice of material properties, Table 2 summarizes the empirical L1 and L2 norm

convergence rates observed for u, v, p, and X at t = 0.4. These rates are obtained via (38) with N = 128.

Fig. 3 includes the values of e2[q; N] that were used to obtain these rates. The values for e1[q; N] are
similar and not shown. In this case, the empirically observed convergence rates are generally not as high

as when the stiffness of the elastic fibers comprising the shell is tapered near the edge of the structure.

This is not surprising since, unlike the tapered case, the Cartesian force density in this case is in fact

discontinuous. Nonetheless, convergence rates at or near second order are generally indicated for

l = 0.05. For the other values of l considered, it is possible that second order convergence rates are not

observed due to the under-resolution of the velocity in the vicinity of very narrow vorticity layers that form

near the fluid–structure interface. Note that these vorticity layers appear well resolved for N = 256 and 512

but not for N = 128.
Representative results for this choice of elastic properties are displayed in the right-hand columns of

Figs. 4, 5, and 6, corresponding to t = 0.08, 0.2, and 0.32, respectively. These computed values were

obtained using the six-point delta function, dIB6h , for l = 0.005 and N = 512, although similar results were

obtained for the other delta functions.
5. Hybrid approximate projection methods

Historically, projection methods have generally used the solution to a single projection equation at each

timestep to determine both the updated velocity and the updated pressure (see [20–22], among many oth-

ers). One alternative approach is to define the updated pressure in terms of a projection that is different

from that used to obtain the updated velocity. When exact projection operators (i.e., projections that ex-

actly enforce the discrete incompressibility of the updated velocity to machine precision) are used with peri-

odic computational domains, there is generally no reason to employ an additional projection, since the

value of the computed velocity, un+1, is unaffected by the approximation made to the true pressure gradient

used to obtain the intermediate velocity, u*. This is because the approximation to the true pressure gradient
used to obtain the intermediate velocity is exactly removed from u* by the exact projection. Even when

physical (i.e., nonperiodic) boundaries are present, the approximation to the true pressure gradient typically

influences the velocity primarily near the physical boundary. When approximate projections are used in

place of exact ones, the situation is more complicated, since the approximation to the true pressure gradient

used to compute u* is only approximately corrected by the projection.

It is well known that even exact cell centered projection methods can introduce nonphysical oscillations

because the operator D Æ G possesses a nontrivial nullspace (resulting in so-called checkerboard modes).

Approximate cell centered projection methods can exacerbate this problem by producing computed veloc-
ities that are contaminated by components that are nonsolenoidal with respect to the cell centered diver-

gence operator. A common approach to dealing with these difficulties is to stably filter the undesirable

components (i.e., the components corresponding to the nonsolenoidal and checkerboard modes) from

the computed velocity [29,42,43]. An alternative approach to improving the quality of the computed solu-

tion was suggested by Almgren et al. [23], who introduced a hybrid approximate projection method for the

incompressible Euler equations. The approximate projection method presented in Section 3.6 is an exten-

sion of this method to the viscous case. At each timestep, such hybrid methods determine two different

intermediate velocities from two different treatments of the momentum equation. Each intermediate veloc-
ity is approximately projected, with the first projection determining the updated velocity and the second

yielding the updated pressure. This approach is clearly more computationally demanding than simply deter-

mining the velocity and pressure in terms of a single approximate projection.
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To justify this additional computational cost and algorithmic complexity, we demonstrate below that

nonphysical oscillations can occur in the computed pressure when a more ‘‘traditional’’ projection method

is used (i.e., a projection method that obtains the updated velocity and pressure in terms of the solution to a

single projection at each timestep). These oscillations, sometimes considered to be a characteristic of the

immersed boundary method [13], are virtually eliminated by making use of our hybrid method.

5.1. A more traditional approximate projection method

Before demonstrating the reduction in nonphysical oscillations provided by our hybrid method, we must

briefly describe a more traditional second order projection method that we will compare to the hybrid

scheme. This method is essentially a version of the projection method of Bell, Colella, and Glaz (BCG)

[22], making use of a modification similar to one suggested by Brown et al. [33] to obtain full second order

accuracy in the pressure. We refer to the resulting scheme as a ‘‘BCG-like’’ approximate projection method.
For this method, the velocity, denoted �u, and pressure, denoted �p, are both obtained in terms of the solution

to the same projection equation. It is important to emphasize that since we are making use of approximate

projections, it is generally the case that �u 6¼ u and �p 6¼ p, where u and p are the velocity and pressure ob-

tained via the hybrid approximate projection method of Section 3.6.

In the BCG-like method, the intermediate velocity is determined by
ðI � g2mLÞðI � g1mLÞ�u� ¼ ðI þ g3mLÞ�un þ DtðI þ g4mLÞ �Nnþ1
2 þ 1

q
fnþ

1
2 �G�pn�

1
2

� �� �
:

Next, �unþ1 is given by approximately projecting �u�, i.e.,
�u� ¼ �unþ1 þG�u;
where
L�u ¼ D � �u�:

The pressure consistent with this treatment of the incompressible Navier–Stokes equations can be obtained

in a manner similar to that used above to determine the updated pressure in the hybrid scheme. In this case,

the updated pressure is the scalar function �pnþ
1
2 given by
�pnþ
1
2 ¼ �pn�

1
2 þ q

Dt
ðI þ g4mLÞ

�1ðI � g2mLÞðI � g1mLÞ�u:
5.2. Reducing nonphysical oscillations via a hybrid projection method

To demonstrate the effectiveness of our hybrid approximate projection method in reducing nonphysical

oscillations when compared to a BCG-like projection method, we restrict the curvilinear coordinate space

to X ¼ ½1
2
; 1
2
� � ½0; 1�, so that the structure is a true elastic interface. This is a situation where the immersed

boundary method can produce nonphysical oscillations in the computed pressure near the interface [13]. As
with the previous computations, the initial configuration is given by (35), although here restricted to r � 1

2

so that the initial configuration is an ellipse. Following its release at t = 0, the membrane undergoes damped

oscillations until eventually settling in a circular configuration. We compute the motion of the coupled sys-

tem up to t = 0.4, at which time the elastic structure has completed one full oscillation and is beginning its

second. The material properties are as described in Section 4.2, with q = 1.0, l = 0.005, and N = 256. The

smoothed delta function employed for this comparison is dIB4h .
The computation is first performed using the BCG-like approximate projection method. When this

method is employed, oscillations are readily observed in the computed pressure plotted in Fig. 7. It is clear



Fig. 7. The pressure at t = 0.4 for an elastic interface interacting with a viscous incompressible fluid. The pressure plotted in the left-

hand column is obtained via a BCG-like projection method. Damped oscillations are evident. In the right-hand column, the hybrid

approximate projection method of Section 3.6 is used, virtually eliminating the oscillations in the pressure. Note that the lower plots

offer a magnified view of the pressure near y = 0.25. For these computations, we use dIB4h with q = 1.0, l = 0.005, and N = 256.
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that these oscillations continue for many grid cells away from the interface before dying out. When we per-

form the computation again, this time using the hybrid approximate projection method of Section 3.6, the

oscillations are virtually eliminated from the computed pressure.
6. Conclusions

In the present work, we have introduced a new formally second order accurate version of the immersed

boundary method and examined the performance of the scheme for a prototypical fluid–structure interac-

tion problem with two sets of elastic properties. The new algorithm makes use of several numerical methods

intended to reduce the occurrence of nonphysical oscillations in the computed dynamics. In particular, we

use a strong stability-preserving Runge–Kutta method for the time integration of the structure configura-

tion, an implicit L-stable discretization of the viscous terms in the momentum equation, and a second order
Godunov method for the explicit treatment of the nonlinear terms in the momentum equation. We also

employ a new hybrid approximate projection method for the incompressible Navier–Stokes equations –

a method that can reduce the occurrence of oscillations in the computed pressure when compared to more

traditional projection methods.
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By considering fluid–structure interaction problems which possess sufficiently smooth solutions, actual

second order convergence rates were demonstrated in our numerical tests of the method at low and mod-

erate Reynolds numbers. Even for higher Reynolds numbers flows, empirical convergence rates generally

exceeded first order. Unlike previous convergence studies, we did not consider the interaction of a true

interface and an incompressible fluid. When the immersed boundary method is applied to such problems,
second order convergence rates are not observed because of the inability of the method to properly capture

discontinuities in the pressure and normal derivative of the velocity across the interface. We avoided these

discontinuities by considering the interaction of a viscoelastic shell of finite thickness and an incompressible

fluid. Although such problems are in some sense not as difficult as interface problems, they are relevant to

many application areas where the immersed boundary method is used. A particular example is the work of

Peskin and McQueen, who have used the immersed boundary method to study coupled blood–muscle–

valve dynamics in the beating heart [3–5,24,8]. Although elastic surfaces are used in their work to describe

the heart valve leaflets, their description of the muscular heart wall is analogous to a viscoelastic shell –
albeit one with complex, time-dependent elastic properties.

In our computational convergence study, we considered viscoelastic shells with two types of material

properties. In the first case, the elastic properties of the shell were defined so that there is a continuous

transition in the material properties at the fluid–structure interface. The resulting Cartesian elastic force

density, f, is a continuous function of x. We also considered a case where there is a sharp discontinuity in

the material properties at the fluid–structure interface, resulting in discontinuous f. Convergence results

were obtained for a wide range of Reynolds numbers using several different smoothed versions of the

Dirac delta function. For both sets of material properties, empirical second order convergence rates were
generally observed except for the highest Reynolds number cases. In most cases, good performance is ob-

tained for the piecewise cubic delta function, dC4h, introduced in [32]. This is notable in part because this

piecewise cubic function can be computed more efficiently than the other delta functions considered. This

delta function should be used with some care, however, as in some cases we have found that it can intro-

duce large oscillations, especially when used for true interface problems. The rather expensive six point

delta function, dIB6h , produces essentially equivalent numerical results for the problems examined in the

present work. It also does not seem to result in the same difficulties as the piecewise cubic function for

interface problems.
Though not a phenomenon limited to the immersed boundary method, fine spatial grids appear to be

required to adequately resolve the dynamics at higher Reynolds numbers. At least for the problems which

we have considered here, we believe this requirement to be localized near thin bands of high vorticity that

occur near the fluid–structure interface. Away from these regions, the velocity and pressure are generally

slowly varying compared to the resolution of the Cartesian grid. Consequently, we feel that these problems

are good candidates for the use of adaptive local mesh refinement. Even though the results presented in this

work were for uniform grid computations, our present software actually allows for adaptive block struc-

tured refinement in the Cartesian computational grid.
Finally, in order to use the immersed boundary method to model and simulate complex three-dimen-

sional systems, parallel computing is a necessity. Our implementation of the present algorithm allows for

distributed memory parallelism. Although we have not made use of this capability in the present work,

it will prove necessary when we make use of this software for more complex problems.
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Appendix A. An explicit second order Godunov method

Even though the explicit Goudnov method that we employ to treat the nonlinear advection terms

appearing in the incompressible Navier–Stokes equations is based on well-established methods introduced

by Colella [17] and modified by Minion [18,19] and Martin and Colella [30], it is hard to find a single place

where they are brought together in the particular way that we have done in this work. The purpose of this
appendix, therefore, is to document what we have done for the convenience of the reader.

A.1. Face centered notation and finite difference operators

Throughout the foregoing discussion, all Eulerian quantities have been described at the centers of the cells

of theCartesian grid. Todescribe the particularGodunovprocedure used to approximate the nonlinear advec-

tion term in Eqs. (27) and (29), we additionally make use of Eulerian quantities described at the faces of the

Cartesian grid cells (or really the edges of the grid cells in the two-dimensional case that we consider here).
If a quantity w(x, t) is defined on the faces of the Cartesian grid cells, we employ the notation

wn
i�1

2
;j � wðxi�1

2
;j; tnÞ to indicate the evaluation of w on the x-faces of the grid, i.e., at the points

xi�1
2
;j ¼ ih; ðjþ 1

2
Þh

� �
. Similarly, wn

i;j�1
2
� wðxi;j�1

2
; tnÞ indicates the evaluation of w on the y-faces of the grid,

i.e., at the points xi;j�1
2
¼ ðiþ 1

2
Þh; jh

� �
. Recall that i, j 2 {0, 1, . . . , N � 1} index the centers of the Cartesian

grid cells (see Fig. A.1).

By convention, a vector field defined on the Cartesian grid in terms of those vector components that are

normal to the faces of the grid cells is called a MAC vector field [44]. That is to say, if uMAC = (uMAC, vMAC)
is a MAC vector field, uMAC is defined at the points xi�1

2
;j ¼ ih; ðjþ 1

2
Þh

� �
, whereas vMAC is defined at the

points xi;j�1
2
¼ ðiþ 1

2
Þh; jh

� �
. In contrast to this staggered grid description, the components of the Eulerian

vector fields previously encountered, such as u and f, have been co-located at cell centers.
Fig. A.1. Locations of cell centered and face centered quantities about Cartesian grid cell (i, j).
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In the present work, when a MAC vector field is defined by interpolating ui,j = (ui,j, vi,j) from cell centers

to cell faces, the individual components of uMAC are obtained by linear interpolation (averaging). We em-

ploy the notation
uMAC
iþ1

2
;j ¼ ðA

c!f uÞiþ1
2
;j ¼

ui;j þ uiþ1;j
2

;

vMAC
i;jþ1

2
¼ ðAc!f uÞi;jþ1

2
¼ vi;j þ vi;jþ1

2
;

and say in this case that uMAC = Ac!f u. Notice that only the normal component of uMAC is defined at a
given cell face.

Similar to their purely cell centered counterparts, the cell centered divergence of a MAC vector field is

approximated by centered differences, i.e.,
ðDf!c � uMACÞi;j ¼
uMAC
iþ1

2
;j
� uMAC

i�1
2
;j

h
þ
vMAC
i;jþ1

2

� vMAC
i;j�1

2

h
;

whereas the MAC gradient of a cell centered scalar quantity is approximated at cell faces by
ðGc!fwÞiþ1
2
;j ¼

wiþ1;j � wi;j

h
; ðGc!fwÞi;jþ1

2
¼

wi;jþ1 � wi;j

h
:

It is important to note that for a cell centered scalar quantity,
ðDf!c �Gc!fwÞi;j ¼ ðLwÞi;j;
where L is the cell centered approximation to the Laplace operator introduced in Section 3.2. This corre-
spondence allows us to easily compute the exact projection of a MAC vector field. In particular, the MAC

projection of wMAC is given by
vMAC ¼ PMACwMAC ¼ I �Gc!f L�1Df!c�
� �

wMAC:
This is an exact projection, since (Df!c Æ vMAC)i,j ” 0. Note that in practice, the application of this exact

MAC projection does not require the use of any additional linear solvers beyond those required by the cell

centered approximate projection, ~P , described in Section 3.3.

A.2. An auxiliary MAC velocity

Before describing the Godunov procedure used to approximate ½ðu � rÞu�nþ
1
2 in our treatment of the

incompressible Navier–Stokes equations, we describe an auxiliary MAC velocity, denoted uMAC, that is
maintained in addition to the cell centered velocity, u. This MAC velocity was not introduced in the initial

discussion of the approximate projection method as it is only used in the Godunov extrapolation procedure.

The auxiliary MAC velocity is obtained in the process of computing the cell centered velocity, u. In our

approximate projection method, recall that an intermediate cell centered velocity, u*, is determined by

solving Eq. (27). The true cell centered velocity, un+1, is then obtained in Eq. (28) as the approximate

projection of u*. To compute uMAC,n+1, we first interpolate u* from cell centers to cell faces, obtaining
uMAC;� ¼ Ac!f u�:
uMAC,n+1 is then obtained by computing the MAC projection of uMAC,*. Luckily, this does not require the

solution of an additional system of linear equations! To see why this is so, recall that the approximate pro-

jection of u* requires the solution of a discrete Poisson problem of the form
Lu ¼ D � u�: ðA:1Þ
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Since (Df!c Æ uMAC,*)i,j ” (D Æ u*)i,j, (A.1) is the same equation that must be solved in order to project uMAC,*.

The solution to (A.1), u, may simply be re-used to directly evaluate
uMAC;nþ1 ¼ uMAC;� �Gc!fu:
The initial value of uMAC may be obtained from the initial value of u analogously. Before projecting the

initial velocity in (34), we first compute
uMAC;0 ¼ Ac!fu0:
We then approximately project u0 and, as above, re-use u to exactly project uMAC,0.

A.3. An explicit Godunov extrapolation procedure

In order to simplify the description of the Godunov procedure, we temporarily restrict our attention in

this section to the advection–diffusion equation,
oq
ot
þ ðu � rÞq ¼ mr2qþ w; ðA:2Þ
where q is a scalar quantity, u is a specified advection velocity, mP 0 is the diffusion coefficient, and w is a

given source term. Our goal in this section is to describe an explicit second order accurate procedure that

uses values defined at time tn to extrapolate the face centered value of q at time tnþ1
2
. Although described

only for the advection–diffusion equation, the following procedure is used without modification as part of

our approximation to the nonlinear advection term appearing in the incompressible Navier–Stokes

equations.
The particular procedure we employ is an explicit Godunov method introduced by Colella [17,30] and

modified by Minion [18,19]. The idea is to extrapolate q from cell centers to cell faces by using Taylor

expansions for q about the Cartesian cell centers. Notice that this extrapolation process is ambiguous: at

every cell face, there are two nearest cell centers and hence two Taylor expansions to choose from. The

ambiguity is resolved by using the expansion that is about the cell center that lies in the upwind direction

– a method motivated by the solution to the Riemann problem for the one-dimensional Burgers� equation.
In order to obtain a stable explicit extrapolation scheme, the timestep must satisfy a condition of the

form Dt ¼ OðhÞ. Consequently, the Taylor series for q(x, t), taken about the point xi,j and evaluated at cell
face xiþ1

2
;j and at time t ¼ tnþ1

2
, is
q
nþ1

2
;L

iþ1
2
;j
¼ qni;j þ

h
2

qxð Þ
n
i;j þ

Dt
2

qtð Þ
n
i;j þ Oðh2Þ:
Note that in this expansion, the face centered value of q is obtained in terms of cell centered quantities that

lie to the left of cell face xiþ1
2
. The time derivative, qt, can be eliminated by making use of Eq. (A.2), yielding
q
nþ1

2
;L

iþ1
2
;j
¼ qni;j þ

h
2
� Dt

2
uni;j

� �
qxð Þ

n
i;j �

Dt
2
vni;j qy
� �n

i;j
þ Dt

2
mðr2qÞni;j þ wn

i;j

� �
þ Oðh2Þ; ðA:3Þ
where u = (u, v). A similar expansion about xi,j+1, evaluated at face xi;jþ1
2
, yields the top state,
q
nþ1

2
;T

i;jþ1
2

¼ qni;jþ1 �
h
2
þ Dt

2
vni;jþ1

� �
qy
� �n

i;jþ1 �
Dt
2
uni;jþ1 qxð Þ

n
i;jþ1 þ

Dt
2

mðr2qÞni;jþ1 þ wn
i;jþ1Þ

� �
þ Oðh2Þ: ðA:4Þ
Similar expansions define the right and bottom states, q
nþ1

2
;R

iþ1
2
;j

and q
nþ1

2
;B

i;jþ1
2

.

Following [18,19], a second order approximation to each of the proceeding Taylor expansions is com-

puted in two steps. The resulting scheme is stable so long as the timestep satisfies a CFL condition of

the form iui1Dt 6 h. Note that the stability restriction is independent of the value of m P 0.
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In the first step of the scheme, (A.3) is approximated by
q̂
nþ1

2
;L

iþ1
2
;j
¼ qni;j þ

h
2
� Dt

4
uMAC;n
iþ1

2
;j
þ uMAC;n

i�1
2
;j

� �� �
D0

xq
� �n

i;j
þ Dt

2
mðLqÞni;j þ wn

i;j

� �
;

where D0
x is a fourth order centered difference operator defined by
D0
xq

� �n
i;j
¼ 2

3
qniþ1;j � qni�1;j
� �

� 1

12
qniþ2;j � qni�2;j
� �

:

Similarly, (A.4) is approximated by
q̂
nþ1

2
;T

i;jþ1
2

¼ qni;jþ1 �
h
2
þ Dt

4
vMAC;n
i;jþ3

2

þ vMAC;n
i;jþ1

2

� �� �
D0

yq
� �n

i;jþ1
þ Dt

2
mðLqÞni;jþ1 þ wn

i;jþ1

� �
:

Analogous approximations define q̂
nþ1

2
;R

iþ1
2
;j

and q̂
nþ1

2
;B

i;jþ1
2

. Note that each of these values includes approximations

only to those derivative terms that are normal to the cell face where the expansion is being approximated.

For now, transverse derivatives are not included.

At each cell face, q̂nþ
1
2 is defined by choosing the upwind state, namely
q̂
nþ1

2

iþ1
2
;j
¼

q̂
nþ1

2
;L

iþ1
2
;j

if uMAC;n
iþ1

2
;j

> 0;

q̂
nþ1

2
;R

iþ1
2
;j

if uMAC;n
iþ1

2
;j

< 0;

1
2

q̂
nþ1

2
;L

iþ1
2
;j
þ q̂

nþ1
2
;R

iþ1
2
;j

� �
if uMAC;n

iþ1
2
;j
¼ 0;

8>>>><
>>>>:

ðA:5Þ
and
q̂
nþ1

2

i;jþ1
2

¼

q̂
nþ1

2
;B

i;jþ1
2

if vMAC;n
i;jþ1

2

> 0;

q̂
nþ1

2
;T

i;jþ1
2

if vMAC;n
i;jþ1

2

< 0;

1
2

q̂
nþ1

2
;B

i;jþ1
2

þ q̂
nþ1

2
;T

i;jþ1
2

� �
if vMAC;n

i;jþ1
2

¼ 0:

8>>>><
>>>>:

ðA:6Þ
The second step in the extrapolation procedure introduces approximations to the transverse derivative

terms. These approximations are obtained by differencing the initial extrapolation, q̂nþ
1
2. In particular,
~q
nþ1

2
;L

iþ1
2
;j
¼ q̂

nþ1
2

iþ1
2
;j
� Dt
4h

vMAC;n
i;jþ1

2

þ vMAC;n
i;j�1

2

� �
q̂
nþ1

2

i;jþ1
2

� q̂
nþ1

2

i;j�1
2

� �
;

and
~q
nþ1

2
;T

i;jþ1
2

¼ q̂
nþ1

2

i;jþ1
2

� Dt
4h

uMAC;n
iþ1

2
;jþ1 þ uMAC;n

i�1
2
;jþ1

� �
q̂
nþ1

2

iþ1
2
;jþ1 � q̂

nþ1
2

i�1
2
;jþ1

� �
;

Similar formulas yield the remaining values. Finally, on each cell face, the value of ~qnþ
1
2 is obtained by

choosing the upwind state as in (A.5) and (A.6).

A.4. Computing the advection term

In order to compute the explicit approximation to the nonlinear advection term, ½ðu � rÞu�nþ
1
2, used in the

solution of the incompressible Navier–Stokes equations, we employ a timestep centered ‘‘advection’’ veloc-

ity, denoted uADV. This advection velocity is a discretely divergence free MAC vector field and is obtained

in two steps:

The first step in obtaining uADV employs the Godunov scheme detailed in Appendix A.3. This procedure

uses uMAC,n to extrapolate the cell centered velocity, uni;j ¼ ðuni;j; vni;jÞ, to cell faces. This is performed
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component-wise, i.e., we first employ the Godunov procedure with uni;j replacing qni;j and employ the corre-

sponding source term,
wn
i;j ¼

1

q
ðf1Þni;j � ðGxpÞ

n�1
2

i;j

� �
;

where f = (f1, f2) is the discrete Cartesian elastic force density and Gp = (Gxp, Gyp) is the discrete pressure

gradient. This yields a timestep centered approximation to u at each cell face in the Cartesian grid. Next, we

perform the analogous procedure for v, i.e., we replace qni;j with vni;j and use the appropriate source term,
wn
i;j ¼

1

q
ðf2Þni;j � ðGypÞ

n�1
2

i;j

� �
;

yielding a timestep centered approximation to v at each cell face in the grid. These extrapolated velocities

are denoted by ~unþ
1
2 and ~vnþ

1
2.

The second step in obtaining uADV discards the transverse components of the extrapolated velocity field.

This yields a MAC velocity, denoted ~uADV;�. This velocity field will generally not be discretely divergence

free (with respect to the MAC divergence operator, Df!cÆ). To enforce incompressibility, the advection
velocity is defined to be the MAC projection of ~uADV;�, i.e.,
uADV ¼ PMAC~uADV;� ¼ ~uADV;� �Gc!f ~u;
where ~u is the solution to a discrete Poisson problem,
L~u ¼ Df!c � ~uADV;�: ðA:7Þ

This completes the procedure for computing uADV.

With uADV in hand, we next re-extrapolate the timestep centered normal and transverse velocities at each

cell face, using the timestep centered advection velocity, uADV, in place of uMAC,n. Except for this one dif-

ference, the extrapolation procedure is identical to that previously used to obtain ~unþ
1
2 and ~vnþ

1
2, again mak-

ing use of the Godunov procedure of Appendix A.3. Doing so yields a second approximation to the

timestep centered normal and transverse velocities at each cell face in the Cartesian grid. These extrapolated
values are denoted �unþ

1
2 and �vnþ

1
2.

Next, the solution to (A.7), ~u, is used to approximately enforce the incompressibility constraint. For the

velocities normal to the cell face where they are defined, we set
u
nþ1

2

iþ1
2
;j
¼ �u

nþ1
2

iþ1
2
;j
� 1

h
~uiþ1;j � ~ui;j

� �
;

v
nþ1

2

i;jþ1
2

¼ �v
nþ1

2

i;jþ1
2

� 1

h
~ui;jþ1 � ~ui;j

� �
;

whereas for the transverse components, we have
u
nþ1

2

i;jþ1
2

¼ �u
nþ1

2

i;jþ1
2

� 1

4h
~uiþ1;j � ~ui�1;j þ ~uiþ1;jþ1 � ~ui�1;jþ1
� �

;

v
nþ1

2

iþ1
2
;j
¼ �v

nþ1
2

iþ1
2
;j
� 1

4h
~ui;jþ1 � ~ui;j�1 þ ~uiþ1;jþ1 � ~uiþ1;j�1
� �

:

Note that in each case, the appropriate component of the discrete gradient of ~u is being used to approxi-

mately enforce the incompressibility constraint.

At long last, the approximation to the nonlinear advection term,
N
nþ1

2
i;j ¼ N 1ð Þnþ

1
2

i;j ; N 2ð Þnþ
1
2

i;j

� �
� ðu � rÞu½ �nþ

1
2

i;j ;
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is defined by nonconservative differencing via
N 1ð Þnþ
1
2

i;j ¼
1

2h
uADV
iþ1

2
;j þ uADV

i�1
2
;j

� �
u
nþ1

2

iþ1
2
;j
� u

nþ1
2

i�1
2
;j

� �
þ 1

2h
vADV
i;jþ1

2
þ vADV

i;j�1
2

� �
u
nþ1

2

i;jþ1
2

� u
nþ1

2

i;j�1
2

� �
;

N 2ð Þnþ
1
2

i;j ¼
1

2h
uADV
iþ1

2
;j þ uADV

i�1
2
;j

� �
v
nþ1

2

iþ1
2
;j
� v

nþ1
2

i�1
2
;j

� �
þ 1

2h
vADV
i;jþ1

2
þ vADV

i;j�1
2

� �
v
nþ1

2

i;jþ1
2

� v
nþ1

2

i;j�1
2

� �
:

Since uADV is discretely divergence free, we could have employed conservative differencing here to approx-

imate the advection term. We do not do so, however, as we find that the use of nonconservative differencing
produces lower errors when we test the approximate projection method against known analytic solutions to

the incompressible Navier–Stokes equations.
References

[1] M.-C. Lai, Simulations of the flow past an array of circular cylinders as a test of the immersed boundary method, Ph.D. thesis,

Courant Institute of Mathematical Sciences, New York University, 1998.

[2] M.-C. Lai, C.S. Peskin, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity,

J. Comput. Phys. 160 (2) (2000) 705–719.

[3] C.S. Peskin, D.M. McQueen, A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in

a viscous incompressible fluid, J. Comput. Phys. 81 (2) (1989) 372–405.

[4] D.M. McQueen, C.S. Peskin, A three-dimensional computational method for blood flow in the heart. II. Contractile fibers,

J. Comput. Phys. 82 (2) (1989) 289–297.

[5] C.S. Peskin, D.M. McQueen, Fluid dynamics of the heart and its valves, in: H.G. Othmer, F.R. Adler, M.A. Lewis, J.C. Dallon

(Eds.), Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology, Prentice-Hall, Englewood Cliffs, NJ, 1996,

pp. 309–337.

[6] D.C. Bottino, L.J. Fauci, A computational model of ameboid deformation and locomotion, Eur. Biophys. J. 27 (5) (1998) 532–

539.

[7] N.T. Wang, A.L. Fogelson, Computational methods for continuum models of platelet aggregation, J. Comput. Phys. 151 (2)

(1999) 649–675.

[8] D.M. McQueen, C.S. Peskin, A three-dimensional computer model of the human heart for studying cardiac fluid dynamics,

Comput. Graphics 34 (1) (2000) 56–60.

[9] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.

[10] R.J. Leveque, Z. Li, Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput.

18 (3) (1997) 709–735.

[11] R. Cortez, M.L. Minion, The blob projection method for immersed boundary problems, J. Comput. Phys. 161 (2) (2000) 428–453.

[12] R. Cortez, The method of regularized Stokeslets, SIAM J. Sci. Comput. 23 (4) (2001) 1204–1225.

[13] L. Lee, R.J. Leveque, An immersed interface method for incompressible Navier–Stokes equations, SIAM J. Sci. Comput. 25 (3)

(2003) 832–856.

[14] S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (1) (2001)

89–112.

[15] E.H. Twizell, A.B. Gumel, M.A. Arigu, Second-order, L0-stable methods for the heat equation with time-dependent boundary

conditions, Adv. Comput. Math. 6 (3–4) (1996) 333–352.

[16] P. McCorquodale, P. Colella, H. Johansen, A Cartesian grid embedded boundary method for the heat equation on irregular

domains, J. Comput. Phys. 173 (2) (2001) 620–635.

[17] P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys. 87 (1) (1989) 171–200.

[18] M.L. Minion, On the stability of Godunov-projection methods for incompressible flow, J. Comput. Phys. 123 (2) (1996) 435–449.

[19] M.L. Minion, A projection method for locally refined grids, J. Comput. Phys. 127 (1) (1996) 158–178.

[20] A.J. Chorin, Numerical solution of the Navier–Stokes equations, Math. Comput. 22 (104) (1968) 745–762.

[21] A.J. Chorin, On the convergence of discrete approximations to the Navier–Stokes equations, Math. Comput. 23 (106) (1969) 341–

353.

[22] J.B. Bell, P. Colella, H.M. Glaz, A second-order projection method for the incompressible Navier–Stokes equations, J. Comput.

Phys. 85 (2) (1989) 257–283.

[23] A.S. Almgren, J.B. Bell, W.Y. Crutchfield, Approximate projection methods: Part I. Inviscid analysis, SIAM J. Sci. Comput. 22

(4) (2000) 1139–1159.



B.E. Griffith, C.S. Peskin / Journal of Computational Physics 208 (2005) 75–105 105
[24] D.M. McQueen, C.S. Peskin, Shared-memory parallel vector implementation of the immersed boundary method for the

computation of blood flow in the beating mammalian heart, J. Supercomput. 11 (3) (1997) 213–236.

[25] E.N. Jung, C.S. Peskin, Two-dimensional simulations of valveless pumping using the immersed boundary method, SIAM J. Sci.

Comput. 23 (1) (2001) 19–45.

[26] L.D. Zhu, C.S. Peskin, Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method,

J. Comput. Phys. 179 (2) (2002) 452–468.

[27] A.M. Roma, C.S. Peskin, M.J. Berger, An adaptive version of the immersed boundary method, J. Comput. Phys. 153 (2) (1999)

509–534.

[28] A.S. Almgren, J.B. Bell, W.G. Szymczak, A numerical method for the incompressible Navier–Stokes equations based on an

approximate projection, SIAM J. Sci. Comput. 17 (2) (1996) 358–369.

[29] M.F. Lai, A projection method for reacting flow in the zero Mach number limit, Ph.D. thesis, University of California at Berkeley,

1993.

[30] D.F. Martin, P. Colella, A cell-centered adaptive projection method for the incompressible Euler equations, J. Comput. Phys. 163

(2) (2000) 271–312.

[31] J.M. Stockie, Analysis and computation of immersed boundaries, with application to pulp fibres, Ph.D. thesis, Institute of Applied

Mathematics, University of British Columbia, 1997.

[32] A.-K. Tornberg, B. Engquist, Numerical approximations of singular source terms in differential equations, J. Comput. Phys. 200

(2) (2004) 462–488.

[33] D.L. Brown, R. Cortez, M.L. Minion, Accurate projection methods for the incompressible Navier–Stokes equations, J. Comput.

Phys. 168 (2) (2001) 464–499.

[34] SAMRAI: Structured adaptive mesh refinement application infrastructure, <http://www.llnl.gov/CASC/SAMRAI>.

[35] R.D. Hornung, S.R. Kohn, Managing application complexity in the SAMRAI object-oriented framework, Concurrency

Comput.: Pract. Ex. 14 (5) (2002) 347–368.

[36] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Web page,

<http://www.mcs.anl.gov/petsc>.

[37] S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc

Users Manual, Technical Report ANL-95/11 – Revision 2.1.5, Argonne National Laboratory, 2004.

[38] S. Balay, V. Eijkhout, W.D. Gropp, L.C. McInnes, B.F. Smith, Efficient management of parallelism in object oriented numerical

software libraries, in: E. Arge, A.M. Bruaset, H.P. Langtangen (Eds.), Modern Software Tools in Scientific Computing,
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